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CHAPTER 1. INTRODUCTION 

1.1 Overview 

Capacity expansion is the process of adding new facilities of similar types over time 

to meet a rising demand for their services. Planning for the expansion of capacity is of vital 

importance in many applications within the private and public sectors. Examples can be 

found in heavy process industries, communication networks, electrical power service, and 

water resource systems. Capacity expansion planning consists of determining future 

expansion times, sizes, locations and types of facilities in the face of uncertain demand 

forecasts, costs, and completion times. 

Technological progress is an important factor to be considered in capacity expansion 

problems. Traditionally, improvements in technology are measured either in terms of 

increased revenue associated with the new technology or decreased costs of procurement and 

operation of the new technology. In many industries, such as commercial satellite 

communications or computer central processing units, introduction of the new improved 

technology causes increases in product efficiency and rapid decreases in unit costs, thus 

affecting the expansion planning decision. Technological change also enlarges markets 

indirectly through improved productivity. Productivity improvements reduce production 

costs. Falling costs enable price reductions and expand the customer base and thus the 

market. 

The effect of a construction lead time for adding new capacity is also an important 

issue in capacity expansion problems. If a lead time for adding capacity exists, the capacity 
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expansion problem is more complicated because uncertain demand creates the risk of 

shortage during the construction period, which can be very costly. If there are no lead times 

for adding new capacity, despite the uncertainty of demand there would be no risk of 

capacity shortage, since the manager could simply wait until demand equals current capacity 

and then install new capacity. 

1.2 Statement of problem 

In many new technology industries, demand for capacity grows according to an 

exponential trend. For example, recent work by Dumortier (1997) predicted the exponential 

growth in the number of Internet users and the end-user multimedia applications. Rai et al. 

( 1998) used the number of service hosts as the measure of the Internet size and suggested that 

exponential model provided the closest fit with the increasing number of service hosts. 

Kruger (2000) predicted the significant growth of electric consumption due to substitution of 

hydrogen for fossil fuels in motor vehicles. The major concern is the magnitude of additional 

electricity power capacity necessary to build a large-scale hydrogen fuel industry, especially 

in a state with large number of vehicles such as California. 

Technological progress is an important consideration for capacity expansion. New 

technological improvements motivate a competitive market and increase company assets. 

Several examples show how technological progress could influence the cost of expansion. In 

Snow's observation (1975) the per-unit capacity cost of satellite communication INTELSAT 

was decreased significantly due solely to technological progress. Newer, improved 

technology of the satellite component expanded voice channel capacity. During the 12 years 
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of consideration, the voice channel capacity had been increased from 480 to 25000, which is 

more than 50 times, while the capital cost per satellite increased only 3.77 times from 16.5 to 

62.3 million dollars. This ratio of channel increase to capital cost increase clearly shows how 

technological improvement could affect the cost of expansion. Moore's Law, which stated 

that computer CPU speed would be doubled up once very 18 months, is another distinctive 

example of how technological progress impact the cost of expansion in many industries. The 

existence of Moore's Law creates improvement in technology and enhances production 

ability, while causes older technology to become obsolete and prices to drop regularly. With 

this technological progress, a manager can choose to purchase the latest technology at the 

highest price, or purchase the older technology for a lower price. 

With all the examples mentioned above, we can see that a capacity expans10n 

problem with exponential demand growth could be more complicated under the 

technological progress environment. The total cost of expansion over a long horizon will be 

considerably different from the expansion problem with stationary technology. Some 
\ 

research in the past explored various capacity expansion problems and determined the 

optimal policies for those cases, but none of them have combined the consideration of 

random exponential demand growth and the uncertain technological change together. This 

research concerns both combining those considerations and investigating the optimal 

capacity expansion policies. 
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1.3 Research objective 

In this thesis, we explore the capacity expansion problem in several model scenarios. 

Each of them will be formulated according to the types of demand growth, the type of 

technological change and the existence of a lead time of capacity expansion. Types of 

demand growth include deterministic exponential and random exponential, while types of 

technological change include deterministic progress and uncertain progress. The goal of this 

thesis is to determine the impact of technological change on the optimal timing and sizes of 

capacity expansions to minimize the expected expansion cost while controlling any risk of 

shortage. 

We formulate a dynamic programming model of capacity expansion for each problem 

case. The objective function for the optimal policy is the total cost of expansion over an 

infinite time horizon. In the deterministic demand growth problem and the random demand 

growth without lead time problem, the objective function consists of the expected discounted 

cost of capacity expansion. In these cases, expansions are made when demand reaches 

current capacity, so timing and sizing decisions are not separate. In the other problem case 

with the existence of a lead time of expansion, the cost of shortage will be combined into the 

objective function. In this case, we determine the optimal expansion policy in two 

dimensions so that both future demands are satisfied to an acceptable level and the expansion 

costs are minimized. The first dimension concerns timing as we mentioned above. The 

second dimension concerns size, which is determining how much capacity to be added at 

given time in the view of discounted cost and economies of scale. With this form of policy, 
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we can solve for the optimal policy parameters to minimized a weighted combination of total 

discounted expected expansion cost and the cost of shortage. 

The most important benefit of this research is the ability to obtain an optimal policy 

for the capacity expansion problem in· the face of exponential demand growth and the 

existence of technological progress. This research is especially relevant in the service 

industries, which often are faced with intensely competitive markets and wish to avoid the 

potential risk of shortage. 

1.4 Thesis organization 

This thesis consists of six chapters. The first chapter describes the introduction, 

objectives, and scope of this thesis. Chapter 2 reviews the past literature relevant to capacity 

expansion, technological progress and its impact on the total cost of expansion, lead time of 

construction, and the use of financial option pricing to estimate the shortage. Notations for 

the parameters used in this thesis are also included in this chapter. 

From Chapter 3 to Chapter 5, we discuss the capacity expansion problem in several 

cases defined by the type of demand growth, the nature of technological progress and the 

existence of a lead time lead time expansion. Figure 1.1 illustrates the organization of this 

thesis. In each chapter, we formulate the capacity expansion model and perform the 

calculations to investigate the effect of technological progress on the cost of expansion over 

an infinite time horizon. In Chapter 3, we investigate the model with deterministic demand 

growth. In Chapter 4, we discuss the model with random demand growth. Finally, in Chapter 

5, we add the consideration of lead time of expansion into the capacity expansion model with 
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random demand growth. General concluding remarks and future works are described in 

Chapter 6. 

Detennini<;tic 
demmd growth 

Capacity 
expansK>n 

Random demand 
growth 

Detennini<;tic 
technological change 
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Uncertain 
technological change 

N o lead titre of 
e ans10n 

With lead titre 
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Detennini<;tic 
technological change 

Uncertain 
technological change 

Detennini<;tic 
technological change 

Uncertain 
technological change 

Figure I. I Thesis organization chart 
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CHAPTER 2. LITERATURE REVIEW AND PROBLEM 

DEFINITION 

2.1 Overview 

In this chapter, we review the previous studies in the scope of this thesis. The review 

can be grouped into capacity expansion problems and models, uncertainty in demand growth, 

technological progress and its effect on the capacity expansion problem, and finally lead time 

of construction, which may prompt expansion before the existing capacity is fully utilized. 

2.2 Capacity expansion 

Since the late 1950s, many studies of capacity expansion problems have been 

conducted. Sinden (1960) studied the capacity expansion problem of certain facilities 

providing service for a growing population, e.g., a power plant, a transportation system, a 

telephone system, etc. Sinden assumed the demand for services as a function of time is given; 

the facility must expand and replace its equipment from time to time in order to meet its 

demand. Finally, Sinden showed in certain cases, that there is an optimal expansion policy 

with equal time intervals between successive expansions. Manne (1961) studied the capacity 

expansion problems with probabilistic growth. His capacity expansion models also included 

the penalties involved in accumulating backlogs of unsatisfied demand. The result showed 

that uncertainty in demand growth causes larger size of capacity expansion, thus, higher 

expected discounted cost of expansion. Another study by Manne ( 1967) of several heavy 
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process industries in India is an example widely known for its application. Manne's capacity 

expansion model consists of deterministic demand, which grows linearly over time. Suppose 

the capacity, once installed, has an infinite economic life and whenever demand reaches the 

existing capacity level, the capacity is expanded. Figure 1.1 illustrates Manne' s capacity 

expansion model. 

Capacity or Demand 
D(t) =gt 

K3 

K1 

(I (2 (3 (4 

Figure 2.1 Capacity expansion process with linear demand growth. 

The total cost of expansion over an infinite time horizon can be simply calculated by the 

summation of the cost of each replenishment discounted back to time t = 0. Srinivasan 

(1967) extended Manne's work to the growth of heavy industries in India. He formulated a 

model in which demand grows at a constant geometric rate, and assumed that there are no 

demand backlogs (excess demand). With the economies of scale in construction incorporated 

into the capacity expansion cost, it is optimal to expand capacity at each of a sequence of 
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equally spaced of time points. Therefore, the optimal expansion size would grow 

exponentially. Srinivasan also assumed that technology is static over the problem horizon. 

The construction lead time for adding new capacity is assumed to be zero. A survey of Luss 

(1982) can be consulted as an extensive literature review on capacity expansion. In his 

survey, Luss unified the existing literature, emphasizing modeling approaches. algorithmic 

solutions and relevant application. 

2.3 Technological progress 

Several studies include the effect of technological progress on the capacity expansion 

models. Snow (1975) reviewed the previous work of Manne an4 Srinivasan (1967) and 

included a technological progress parameter in the capacity expansion model of the 

communications satellite INTELSAT. This added parameter is the annual exponential rate at 

which prices fall due solely to the effect of technological progress. Snow showed that the 

newly added technological change can affect the capacity expansion model by decreasing the 

discounted cost of each replenishment. More detail of Snow's work will be discussed in 

Chapter 3. Other previous studies that suggested the importance of technological change to 

the decision making in a capacity expansion or replacement problem are listed as follows. 

Goldstein et al. (1988) studied the effect of technological breakthrough on the machine 

replacement problem. They presented a dynamic discounted cost model and a method for 

finding the optimal age for replacement of an existing machine in a technological 

development environment. In their research, they assumed that a new technological 

breakthrough is about to enter the market in the form of new machine, which has higher 

purchased cost, but lower maintenance costs than the existing machine. Hopp and Nair 
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( 1991) developed a procedure for computing the optimal replacement decision in an 

environment of technological change. Their model assumed that the costs associated with the 

present and future technologies are known, but the appearance times of the future 

technologies are uncertain. Nair (1995) studied the uncertain sequential technological 

change, which affects the firm's strategic investment decisions. He suggested that the 

appearance of the future technologies are considered uncertain with probabilities that may 

vary with time, but the order in which they appear is assumed sequential, like the different 

generations of microchips for personal computers. Finally, he developed an approach using 

nonunique terminal rewards to solve the dynamic programming model of the replacement 

problem. All the previous works discussed above show how important of technological 

change to the capacity expansion problem. The prediction and forecasting of technological 

change itself was shown in the research of Porter et al. ( 1991 ), which discussed the models of 

technology growth from the previous works by Gompertz and Fischer-Pry. Porter et al. 

suggested that the growth in capacity of many technologies is exponential over a 

considerable time period. Rajagopalan et al. (1998) formulated a capacity expansion and 

replacement model with a sequence of technological breakthroughs. They modeled the 

stochastic technological change as a semi-Markov process by specifying the distribution of 

the time between two consecutive innovations and the matrix of transition probabilities for 

the levels of technology achieved. The timing between innovations can accommodate the 

realistic situations by proper choice of time-to-discovery distribution which is different in 

many industries. 
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2.4 Uncertain demand growth 

Various models have been formulated for the capacity expansion problem with 

random demand. Freidenfelds (1980) studied the effects of uncertainty in demand on 

capacity expansion decisions. He specified demand as a birth and death process for fixed 

expansion increment. Freidenfelds showed that the effect of randomness is identical to the 

effect of a larger growth rate. Davis et al. (1987) formulated the demand model as a random 

point process, i.e., increasing by discrete amounts at random times. Their capacity expansion 

model also included a cost associated with failure to meet demand, and a wasteful cost of 

overcapacity. They studied the problem by methods of stochastic control and presented a 

numerical algorithm to determine the optimal policy. 

Bean, Higle and Smith (1992) showed that the capacity expansion problem over an 

infinite horizon with demand that follows either a nonlinear Brownian motion or a non-

Markovian birth and death process could be transformed into an equivalent deterministic 

problem. This equivalent deterministic problem is formed by replacing the stochastic demand 

by its deterministic trend and replacing its cost discount factor by a new deterministic 

equivalent interest rate, which is smaller than the original, in approximate proportion to the 

uncertainty in the demand. More details of this study will be discussed in Chapter 4. 

2.5 Lead time of expansion 

There are some studies of capacity expansion model with lead time for adding 

capacity. Nickell ( 1977) formulated a model with an uncertain future change in demand and 

showed that the existence of a fixed lead time for adding new capacity would cause a firm to 
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introduce a capacity increase earlier. He also showed that a longer lead time results in earlier 

anticipation of demand increases. Davis et al. (1987) presented a more mathematical model 

of the capacity expansion process of large scale projects that incorporated a controllable non-

zero lead time of constructing new capacity into uncertain future demand forecast model. 

They formulated the optimization problem by methods of stochastic control theory, and 

finally presented numerical algorithms for finding an optimal policy and showed the 

solutions for some simple cases. 

Chaouch and Buzacott (1994) studied the effect of lead time on the timing of plant 

construction with the objective of minimizing the expected discounted costs of expansions 

and shortages over the infinite time horizon. Their model has certain fixed lead time of 

construction that is independent of plant size. The demand grows alternately with constant 

rate in some periods and stagnant growth in other periods as illustrated in Figure 2.3. They 

suggested that it may be economically attractive to defer plant construction beyond the time 

when existing capacity became fully absorbed for a certain lead time duration. Longer lead 

times increase the optimal capacity trigger levels and sizes of capacity additions. Ryan 

(2000) formulated a dynamic programming model of capacity expansion for uncertain 

exponential demand growth and deterministic expansion lead times, and used option pricing 

formulas to estimate the shortages to result from a capacity expansion policy. Ryan showed 

that, with the expected lead time shortage fixed, the discounted expansion cost could be 

minimized by expanding capacity by a constant multiple of existing capacity. 
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Kn+U1 

Kn 
D(O) 
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D(t) =eµ+a,/tZ 

Figure 2.2 Expansion policy with fixed lead time H 

Capacity or Demand 

Demand 

Capacity 

H 
Time 

Figure 2.3 Chaouch and Buzacott's expansion policy 
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Pak (2001) suggested that the shortage estimation methods during the lead time of 

capacity expansion could be estimated as the values of some financial options. He modeled 

the capacity expansion with lead time of adding new capacity that creates the potential 

capacity shortage. Pak investigated four options including European call option, Asian 

option, Lookback option, and Summing European option. After comparison between these 

four financial options, he suggested that the Summing European Option with a proper 

subdivision of the lead time is the most appropriate estimate for lead time shortage. Figure 

2.4 illustrates the concept of using the Summing European Option to estimate the potential 

shortage. More details will be discussed in Chapter 5. 

Demand or capacity 

Kn 

Un 
So; 

Kn-1 

H 
H 

Figure 2.4 Shortage estimation using Summing European Option. 
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2.6 Notations 

In this section, we list the common parameters being used in this thesis and their 

description. The parameters are grouped logically, according to whether they relate demand 

model, capacity cost, technological progress, or represent decision variables. 

Demand model notations 

g : Exponential rate of demand growth 

D(t): Demand of capacity at time t 

µ:Constant rate (drift) of logarithmic demand growth 

u : Constant volatility of logarithmic demand growth 

t n : Time at n'h expansion 

Capacity and cost notations 

r : Annual interest rate 

a : Economies of scale factor 

n : Index of sequence of expansions (n = 1,2, ... ) 

Kn : Installed capacity after n additions are completed 

K 0 : Initial capacity 

Un = Kn - K n-i : Size of n'h capacity expansion 

C : Total discounted cost of expansion 

E( C) : Total expected discounted cost of expansion 
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H: Fixed installation lead time 

Sn (H): Capacity shortage estimated by European option 

Sn : The total shortage expected based on specific time unit during the lead time 

ct>(.): The standard normal cumulative distribution function 

u(r, X): Infinite horizon expected capacity expansion cost 

v(r, X) : Infinite horizon expected discounted shortage 

m: Penalty for shortage 

Technological progress notations 

p : Average cost decrease due to deterministic technological change 

fl = (1 - e-q }A. : Equivalent cost decrease rate per year 

A, : Average innovation per year 

q : Average price drop per innovation 

N(t): A number of innovations up to an arbitrary time t. 

Decision variables notations 

r: Expansion timing variable (ratio of potential shortage to existing capacity) 

X : Expansion size variable 
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CHAPTER 3. DETERMINISTIC DEMAND GROWTH WITH 

TECHNOLOGICAL PROGRESS 

3.1 Introduction 

In this chapter, we focus on a model with deterministic demand growth and 

deterministic or uncertain technological change. We review and extend Snow's (1975) study 

of the impact of technological progress on satellite communication, which indicated that the 

appearance of technological improvements would cause a significant drop in the per unit cost 

of satellite communication. This drop is equivalent to an enlargement of the discount factor 

used in the capacity expansion cost function. 

3.2 Deterministic technological change 

The capacity expansion problem with deterministic demand growth has been widely 

discussed in many previous studies. Snow (1975) modified Srinivasan's (1967) capacity 

expansion model by assuming an exponential decrease in future capacity costs. Snow's 

example of the satellite communication system cost showed that new technology introduced 

to the system can cause a decrease in per unit price of the system. The exponential decrease 

in future capacity costs can be shown as 

C(x,t + M) = e-pru C(x,t) 

where C(x,t) is the discounted expansion cost of capacity sizex at time t, and p denotes 

the cost decrease rate due to technological change. 
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Let D(t} be the demand with annual exponential growth rate g. Let K0 be the capacity level 

at time t = 0. Therefore, demand will reach a level of K 0eg' at time t. The unit cost of 

adding U units of capacity at time 0 is assumed to equal kU 0 current dollars. where a is an 

economies of scale parameter such that 0 < a < 1 . Throughout the thesis, we assume that cost 

units have been scaled so that the constant k is unity for simplicity. The cost of the same size 

expansion at time t is e-P'U 0 • 

Since demand must always be met, the additional capacity will be installed once 

demand catches up to the existing capacity level. The problem is to determine the sequence 

of expansion sizes {u n, n ~ 1} that minimize the infinite horizon discounted cost. 

Capacity or Demand 
D(t)=~' 

K1-t-~~~~~i.--

Ko= D(O) 

11 Time 

Figure 3.1 Exponential demand growth and expansion policy 

From figure 3.1, the first replenishment U1 can be written as the difference of installed 

capacity levels, 
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Let e -n be the present value of one dollar at time t years, where r denotes the annual 

interest rate. Then, the total discounted cost of expansion can be summed. 

CIO CIO 

C = "L.e-n·e-P'·Una = "L.e-(p+r)t.Una 
n~ n•I 

Therefore, the cost impact of technological change is equivalent to an increase in the interest 

rate. Sinden (1960) proved that the total cost of expansion will be minimized if the time 

between each pair of replenishment points is equal, i.e. t n+i - t n = t n - t n-i for all n ~ 2. Let 

l!..t =In -tn-I, then 

For convenience, let G(!!..t} = K 0 (egru -1 ). 

At time t n , the replenishment size will be 

or (3.1) 

Hence, we have the cost function, 
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C = f e-m61e-pn61(egn61G(M)f 
n=I 

co =I e-(r+p-ag)n61G(L\t r 
n=I 

By summing the infinite geometric series, the cost can be written in closed form; 

C = G(M)a 
1 -( r+ p-ag )61 ' -e 

(3.2) 

with the condition for convergence, r + p - ag > 0 . 

From this total cost function, we can find the optimal expansion policy parameter !lt 

by minimizing the function respect to !lt. We used the FindMinimum function in 

Mathematica, which searches for a local minimum (Wolfram, 1999, pp 1135). 

As a baseline we used parameter values g = 0.05 (annual growth rate), r = 0.1 

(annual risk-free interest rate), and a= 0.7 (economies of scale factor), and set the initial 

demand and capacity K0 = 1 for convenience. 

Figure 3.2 illustrates the effect of technological progress on the optimal expansion 

policy parameter or time interval between each expansion, when levels of the cost decrease 

rate varied from 0.01 to 0.2. As the cost decrease rate, p , becomes higher (i.e. introduction 

of a new model causes a large price drop of the latest product model), the optimal policy is to 

expand more frequently. Equivalently, expansion sizes become smaller as the cost impact of 

technological change increases. 
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p: Deterministic rate of cost decrease 

Figure 3.2 Effect of p: deterministic rate of cost decrease due to 

technological change 

3.3 Uncertain Technological Change 

In the previous section, we reviewed Snow's formulation of the capacity expansion 

problem with an assumption that technological progress is deterministic. The deterministic 

progress means we know the exact time when new technology will be introduced to the 

market. The newer technology creates better product efficiency, and has a direct impact on 

the present worth cost of expansion. For some types of capacity such as a computer's CPU, 

we definitely know that a newer CPU type means faster speed of calculation with better 

efficiency. However, we might not know the exact date of the introduction of that new CPU 

to the market. A more realistic model should consider the appearance times of newer 

technology to the market as an uncertain process. 
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In this section, we consider the capacity expansion problem with uncertain 

technological change. We assume the technological innovations follow a Poisson process. 

One possible example of Poisson technological change can be found in the medical imaging 

equipment industry over the past two decades. Successive of technologies such as X-ray, 

computed tomography (CT), magnetic resonance imaging (MRI), and positron emission 

tomography (PET) have provided better diagnostic information that has helped physicians in 

eliminating expensive surgeries and in selecting more appropriate medical therapies 

(Rajagopalan, 1998). Let A, denotes the average rate of innovations per unit time. Let N(t) 

be the number of innovations up to an arbitrary time t . Let q be the exponential rate of cost 

decrease for each innovation. Further assumptions for the Poisson process are as follow: 

1. Technology changes occur one at a time. 

2. N(t + l1t )- N(t), The number of technological changes during the interval 

(t,t + l1t) is independent of N(u ), 0::; u::; t. 

3. The distribution of N(t + !::i.t )- N(t) is independent of t for all l1t ~ 0 . 

As in the deterministic technological change, the decrease in future capacity cost can be 

written as 

C(x,t + !::i.t) = e-qN(t.i)c(x,t), 

Recall the capacity expansion cost function with deterministic technological change; 

co 

C= z:e-rt"e-pt"Una 
n=I 

In the uncertain technological change case, we assume that the cost of an expansion of size 

U at time t is e-qN(i)ua. Here, q denotes the rate of cost decrease per each innovation, and 
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A denotes the average number of new innovations per year. We have the discounted cost 

function as 

<Xl 

C = Ie-r1·e-qN(1.)Una 
n=I 

The expected discounted cost function is 

E[C]= f e-rt. E[e-qN(1.)Pna (3.3) 
n=I 

For any t, since N(t) is a Poisson random variable, we can use the Poisson moment 

generating function E[e-qN(i)] = e-(i-e-q )Ai (Ross, 1985, p. 60), and obtain the equivalent 

deterministic cost decrease rate of jJ = (1 - e-q )A. . Thus, the total expected discounted cost 

function (3.3) is transformed to 

E(C)= I e-r1.e-(1-e-q),u.Una. 
n=I 

From the definition of Un in equation (3.1 ), Un = eRI" G(~t), we then have 

E(C) = i:e-(r+p)nru (ei."'61 G(~t )f 
n=I 

<Xl = Ie-(r+p-ag)nruG(M)° 
n=I 

Then, once again summing the geometric series 

E(C)= G(M)° 
1 -( r+ p-ag )ru -e 

(3.4) 

with the condition for convergence, r + fl - ag > 0 . 

As in the previous section, we can find the optimal expansion policy parameter ~t by 

minimizing the cost function (3.4) respect to ~t. We used the same baseline parameter 
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values of g, r, and a, as before and, in addition, A.= 0.5 (average rate of innovation per 

year), and q = 0.05 (average cost decrease rate per innovation). 

Figure 3.3 illustrates the effect of the innovation rate on the optimal policy parameter, 

ll.t, when the level of the annual innovation rate varied from 0.2 to 2. At a high average rate 

(new technology occurs in the market more frequently), the optimal policy tends to 

encourage earlier and more frequent capacity expansion, i.e., the time interval between 

replenishments is shorter . 
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Figure 3.3 Effect of A., innovation rate 

Figure 3.4 illustrates the effect of q, the cost decrease rate per innovation, on the 

optimal policy parameter, when level of cost decrease rate varied from 0.01 to 0.1. As the 

cost decrease rate increase (product cost drops more dramatically if newer technology 

introduced), the optimal policy tends to encourage earlier capacity expansion and the time 

interval between expansions is shorter. 
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Figure 3.5 illustrates the effect of a, economies of scale parameter on the optimal 

expansion policy parameter of two capacity expansion models, one with technological 

progress, and another without technological progress, at the same baseline parameter values. 

Increasing values of a correspond to decreased economies of scale. As economies of scale 

increase (smaller a value), the optimal time interval between each expansion is increased for 

both capacity expansion models. Figure 3.5 shows that the appearance of technological 

progress apparently affects the optimal policy parameter by encouraging earlier expansion 

time. The capacity expansion problem in a technological progress environment is solved by 

incorporating an additional discount factor due to technological change. Earlier expansion or 

shorter time interval between each expansion means a smaller size of expansion, hence more 

flexibility to adopt products with newer technology. 

Figures 3 .6 and 3. 7 illustrate the relation between parameter q (cost decrease rate per 

innovation), A (annual rate of innovation), and p (equivalent cost decrease rate per year). 

The graphics show that q, the cost decrease rate per innovation, tends to have slightly lower 

impact to equivalent cost decrease rate per year than those of A , the annual rate of 

innovation. In Figure 3.6, increasing the value of q by 100 percent from 0.01 to 0.02 causes 

the average value of p to increase by 49.2 percent, while increasing the value of A by 100 

percent from 1.0 to 2.0 causes an average p increase of 50.0 percent. 
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CHAPTER 4: RANDOM DEMAND GROWTH WITH 

TECHNOLOGICAL PROGRESS 

4.1 Introduction 

In this chapter, we consider a capacity expansion model that has random demand 

growth and technological change. We consider both deterministic rate of technological 

change and uncertain occurrences of technological change. In this chapter, we assume there 

is no lead time for expansion, i.e., the manager can wait until demand reaches the existing 

capacity level and then add more capacity instantaneously. Also, there will be no risk of 

penalty due to capacity shortage in this scenario. Figure 4.1 illustrates the random demand 

growth pattern and its expansion policy. Here X(t) is Brownian motion with drift µ > 0, and 

variance a 2 > 0' and x(o) = 0. 

Capacity or Demand 

to I I 12 13 
Time 

Figure 4.1 Random demand growth and expansion policy 
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We assume an exponential growth in demand for capacity with parameters µ as the 

constant drift of logarithmic demand growth, a denotes constant volatility of logarithmic 

demand growth, and g = µ + a 2 I 2 as the mean exponential growth rate of demand. Let 

D(t) denote the demand for capacity at time t , this demand satisfies 

where Z is a standard normal random variable that is independent of the demand for capacity. 

D(t) . Then it follows that, given the demand at time t, the demand at time t+M is 

lognormally distributed with mean and variance given by: 

E[D(t + M ~D(t )] = D(t )eg& 

Var[D(t + M ~D(t )] = D(t )2 e2g& (ea 2& -1) 

4.2 Deterministic Equivalent Problem 

The previous study of Bean, Higle, and Smith ( 1992) suggests that, in certain cases, 

the problem of capacity expansion with stochastically growing demand can be transformed 

into an equivalent deterministic problem. Then, we can apply previous results for the 

deterministic problem to solve for the optimal expansion policy. 

Let T(x) be the time at which a total capacity x is exhausted. In specifying the 

deterministic formulation, the discount factor for costs incurred at the random time T(x) is 

replaced by its expected value, that is e-rr(x) is replaced by E[e-rT<x>] . A nonnegative 

number r • , such that E[e rT(x)] = e-r' H[T(x )] for all x ;:::: 0, is said to be an equivalent interest 
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rate for the deterministic problem. When an equivalent interest rate r • exists, the original 

stochastic capacity expansion problem may be solved via a deterministic problem 

formulation in which 

a. The random expansion times T(x) are replaced by their expected values. 

b. The original interest rate is replaced by its equivalent r • . 

By Jensen's inequality, it follows that r • ~ r (Freidenfelds 1981, pp.41 ). The effect of 

demand uncertainty is summarized by a drop in the effective rate of interest. The optimal 

expansion size would be larger than in the absence of uncertainty. Without lead times for 

adding capacity, if demand is a transformation of Brownian motion, the following theorem 

says that the problem with uncertain demand can be solved deterministically. 

Theorem (Bean et al. 1992) 

If {P(t ),t ~ O} is transformed Brownian motion with underlying drift µ > 0 and variance a 2 , 

and transforming function h, then let p• (t) = h(µt) and 

Every optimal capacity expansion sequence for the deterministic problem with demand p• 0 
in which all costs are continuously discounted using the interest rate r * is optimal for the 

stochastic problem. 

For linear Brownian motion with drift µ > 0 and variance a 2 , let T(x) =inf {t ~ 0: X(t) 2:'. x} 

be the time at which a total capacity x is exhausted. Then 
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(4.1) 

where p = ;, ( I + 2{:) 
2 

- I }Karlin and Taylor 1975, pp.362). 

Also, 

E[T(x )] = - ! E[e-rT(x) ],=0 

r=O 

=+-:.[ .. ,.[~)'-·] !l-;( 1+2tr-1JJL 

= (-1{-; G~1+2r(: H"' 2(: )' L 
= ;(~)1x2{:)' 

x = 
µ 

When an equivalent interest rate exists, it is unique and is given by (Bean et al., 1992. pp 

212) 

_µ ( 1+2r(u)2 -lJx 
• llnE[e-rT(x)] a2 µ 

r - --------- E[T(x)] - x/ µ 
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In this chapter, we assume the demand model follows a geometric Brownian motion with 

drift and can be written as 

D(t)= D(O)ex(i). 

Let h(X(t )) = D(t) = D(O )ex(i) be the transforming function. Also, let y = h(x) = D(O )ex. 

Hence, 

Let i-(y) = inf {t ~ 0 : D(t) ~ y} be the time when demand D(t) reaches the capacity level y 

From (4.1) 

and 

r{y)= inf~~ 0: X(t)~ h-1(y)} 

= T(h-1(.Y)) 

So, the equivalent interest rate is given by 

Let In be the time when demand reach existing capacity level Kn-i, i.e., 

Then 

(4.2) 
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I K._, I K._, 
= e -p n /J(O) = en /J(O) 

( ) ( ( ) 
J

-p 

= (Kn-I )-p = (D(o))p 
D(O) Kn-i 

The advantages of solving the stochastic problem through its deterministic equivalent 

are seen by applying the optimal policy used in Chapter 3. Suppose that capacity costs are 

fixed and only depend on the capacity size with economies of scale 0 < a < 1 . That is, 

suppose the cost C( U) of providing capacity of size U is given by C( U) = U1, where O<U< oo. 

The optimal expansion policy is to install facilities of increasing capacities to result in equal 

time intervals T* between each installation times. Let D(O) be the initial demand for the 

capacity, and µ denote the annual demand growth rate. The total expansion cost function 

can be written as 

(4.3) 

with the condition for convergence, r • - aµ > 0. And, r* can be found by minimizing the 

cost function respect to T , or 

With this optimal time interval between each installation, the optimal sequence of capacity 

additions is given by 

u; = D(O )eµ(n-i)r' (eµ1" -1) 
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For n = 1,2,3, .... Note that the effect of demand uncertainty as measured by a 2 is completely 

included within r •. 

4.3 Equivalent deterministic problem with technological progress 

In the previous section, we have developed the equivalent deterministic capacity 

expansion problem with the objective function or capacity expansion cost in equation (4.3). 

In this section, we apply the technological progress, which affects the total discounted cost of 

expansion as described in Snow (1975) into the equivalent deterministic model. 

The expected discounted cost is f E[e-r'· e-pi. p n °. 
n=l 

The discount factor is given by 

[ -r't ] I =Ee • ,r =r+p 

Since 

E[e-r't.] = E[e-r'r(K.-1)] 

r - 'T(h-1(K ))] = Ele r •-I 

it follows that, 

where 

A µ [ p=-a2 
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and 

Hence, the equivalent interest ,..• ,.. µ . ( )2[ rater1 =µp=a .· I+ 2r'(: r -1) can solve the 
ao 

equivalent deterministic problem to minL:e-r,'h-'(K._,)Un°. The optimal policy parameter, r·' 
n=1 

can be found by 

At base line we used parameter value µ = 0.05 (average growth rate), a 2 = 0.1 

(variance associated with demand growth), and a= 0.7 (economies of scale factor). 
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Figure 4.2 Effect of p, rate of cost decrease due to technological change 
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Figure 4.2 illustrates the effect of technological progress on the optimal expansion 

policy parameter or time interval between each expansion, when levels of cost decrease rate 

varied from 0.01 to 0.2. As the cost decrease rate, p, becomes higher (product price drops 

heavily when newer technology become available), the optimal policy encourages earlier 

expansion or a shorter time interval between each expansion. The result also indicates that 

timing policy is less sensitive to the rate of cost decrease at higher value of p. 

4.4 Uncertain technological progress 

In this section, we consider the capacity expansion problem with uncertain 

technological change i.e. we might know only the trend of technological changes. As in 

section 3.3, we assume the technological change as a Poisson process with rate A., the 

average rate of innovation per unit time. Let N(t) be a number of innovations up to an 

arbitrary time t. We assume that N{t) is independent of the demand for capacity. Let q be 

the exponential rate of cost decrease for each innovation. The expected discounted cost is 

f E[e-''·e-qN(t.)Pn a. The discount factor is given by 
n=I 

= E,. [e -rt. E[e -qN(t.) It n ] 
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Thus, we have 

E[e-rt" e-qN(t.)] = E[e-(r+A(t-e-q )}. ] 

In this case, the equivalent interest rate 

...... "' µ ( )2( '2 = µ{3 = a 

00 

can solve the equivalent deterministic problem to min Ie-r;h- 1(K._1 )Un°. The optimal policy 
n=I 

parameter, r·' can be found by 

as in deterministic technological progress. We also use the same base line parameter value as 

those in section 4.3 as µ = 0.05 (average growth rate), a 2 = 0.1 (variance associated with 

demand growth), a= 0.7 (economies of scale factor). 

Figure 4.3 illustrates the effect of the innovation rate on the optimal policy parameter, 

when the annual innovation rate varied from 0.2 to 2. At high average rate (new technology 

occurs in the market more frequently), the optimal policy tends to encourage earlier capacity 

expansion or the time interval between replenishment is shorter. The graphic result also 

shows that large economies of scale cause the shorter interval of time between each 

expans10n. 
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Figure 4.4 illustrates the effect of q, the cost decrease rate per innovation, on the 

optimal policy parameter, when level of cost decrease rate varied from 0.01 to 0.1. As the 

cost decrease rate increases (product cost drops significantly if newer technology 

introduced), the optimal policy tends to encourage earlier capacity expansion or the time 

interval between replenishment is shorter. The graphical result also shows that the optimal 

policy tends to be less sensitive to q at high values of q than at lower values of q. A large 

value of a, economies of scale, causes a shorter time interval between each expansion. When 

the value of q becomes higher, the optimal policy becomes less sensitive to the a value. The 

span of differences in optimal policy by varying a from 0.6 to 0.8 is smaller when the level of 

q is higher. 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 
a: Economies of scale 

..... - w /o Technological progress-w-with Technological A-ogress 

Figure 4.5 Comparing the problem with technological progress and problem without 

technological progress 
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Figure 4.5 shows that the appearance of technological progress apparently causes 

effect to the optimal policy parameter by encouraging a shorter time interval between each 

expansion time. As in the problem with deterministic demand growth in Chapter 3, capacity 

expansion problem in technological progress environment incorporates an additional 

discount factor due to technological change. Earlier expansion or shorter time interval 

between each expansion means smaller size of expansion, hence more flexibility to adopt 

products with newer technology. 
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CHAPTER 5: RANDOM DEMAND GROWTH WITH LEAD 

TIME FOR CONSTRUCTION 

5.1 Introduction 

In the previous chapters, we discussed the capacity expans10n problem with 

technological change in several cases including deterministic and random demand growth 

with no lead time of installation. However, the existence of an installation lead time for 

adding new capacity, which occurs in many industries, can cause the risk of capacity 

shortage during that period. Therefore, the consideration of lead time in capacity expansion 

problems is appropriate in many actual situations. In this chapter, we focus on the capacity 

expansion model with random demand growth in the presence of a fixed installation lead 

time. With the potential shortage penalty caused by this lead time, the total expansion cost 

function discussed in Chapter 4 will be augmented with a shortage penalty cost. We 

formulate the problem in two cases; the first case features deterministic technological 

change, and the second case has uncertain technological change. Figure 5.1 illustrates the 

potential capacity shortage during the lead time of expansion, which occurs when demand 

growth during the lead time surpasses the existing level of excess capacity. Here, S1 is the 

shortage during the lead time of expansion at time t1 + H. 
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Figure 5.1 Capacity shortage during lead time of construction 

5.2 Demand model and expansion policy 

In addition to the demand model in Chapter 4, we assume that a fixed lead time of H 

time units is required to install additional capacity in any quantity. The cost of a capacity 

increment is assumed to be discounted continuously by interest rate r > g and the rate of cost 

decrease due to deterministic or random technological change is as appears in the previous 

chapters. 

Since we assume a lead time to install more capacity, there is the risk of capacity 

shortage during that installation time. This potential shortage differentiates the total cost 

function for the expansion models in this chapter from those in Chapter 3 and Chapter 4. In 

this chapter, the total cost of expansion consists of capacity cost and shortage penalty. There 

are two problems to deal with, in order to minimize the infinite horizon discounted expansion 
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cost and control the risk of shortage during the lead time. The first problem is the timing of 

adding new capacity; the second problem concerns the size of the additional capacity. The 

optimal expansion policy discussed in this chapter addresses these issues. 

In order to estimate the shortage cost, we need to estimate the shortage during the 

lead time of expansion. This shortage can be estimated by similarity with the value of 

financial options. According to Jarrow and Rudd (1983), a European call option is the right 

(but not the obligation) to buy an asset at a certain strike price on a certain expiration date. 

Birge (2000) showed that the risk in manufacturing and service operations decisions with 

limited capacity can be incorporated into the planning models by using the option pricing 

theory. He noted that "the plant has an option on the demand market as long as its capacity is 

not exceeded. Another way to view this situation is that the owner of the finite-capacity plant 

holds all of the demand but then sells off an option to other producers to capture any demand 

beyond the plant's capacity" (Birge, 2000 pp.20). Ryan (2000) noticed that the expected 

quantity of shortage at the end of lead time is mathematically identical to the value of a 

European call option on an asset. Demand for the capacity and the lead time of expansion can 

be compared to stock price and time to expiration, respectively. The expected quantity of 

shortage at the end of lead time using the Black-Scholes option pricing formula is given by 

(Jarrow and Rudd, 1983) 

S!E) = E[(D(t n + H )- K n-i )+] = egH D(t n ";I>(h )- K n-i <l>(h - a..fii) 

where h = log(D(t n )! K n-1) + (g + cr2 I 2 )H 
a..fii 

and <l>(.) is the standard normal cumulative distribution function. 

Since the shortage is measured in terms of proportion to installed capacity, then 
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depends on demand and installed capacity only their ration. Therefore, potential shortage can 

be controlled by a fixed ratio y = D(t n )! K n-i , independent of n, which will trigger an 

expansion. 

Timing policy: The nth expansion installing time (tn) is the minimum value of time, t when 

D(t) = yK n-i • Here, y is a decision variable. 

In electric utilities, before deregulation, this was known as a proportional reserve 

policy. A larger y value means delaying the expansion until demand is close to the existing 

capacity level. This delay would cause a risk of capacity shortage during the lead time, 

although it might be economically advantageous. On the other hand, a smaller r provides a 

smaller risk of shortage, but it would result in increased present value of capital cost. 

As in previous chapters, the infinite horizon discounted expansion cost is the 

summation of the cost of a capacity increment of size Un multiplied by the discount factor for 

the nth expansion. 

C =I E[e-r1" JuJ0 (5.1) 
n=I 

Theorem (Ryan (2000)) 

Supposed that the nth expansion is initiated at the minimum value of t for which 

D(t) = yK n-i , where y is fixed. Then the infinite horizon discounted expansion cost, C, is 

minimized by installing Un =Kn -Kn-i such that Kn= (X + IY K0 , where X > 0. 
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Assuming the timing policy is followed, the sizing policy can be derived from the 

above theorem. 

Sizing policy: Under the timing policy, the n'h expansion is given by Un = XKn-i, for 

someX>O. 

The second decision variable, X, can be interpreted as the multiple of current capacity 

to install in each expansion, which means that the n'h expansion size is a fixed multiple of 

existing capacity from the previous expansions. To achieve an appropriate tradeoff between 

shortage risk and capital cost is the ultimate goal of optimizing the expansion policy 

parameters, r and x. 

5.3 Shortage estimation using summing European option 

Pak (2001) noticed that the usage of European call option to estimate the capacity 

shortage is not completely satisfactory since it measures the shortage only at one instant at 

the end of the lead time. He compared several alternatives such as Asian option, Lookback 

option, and Summing European option and finally suggested the Summing European option 

as the most accurate and comprehensive shortage measure. The main idea of Summing 

European Option is to replace the fixed lead-time by a series of decreasing lead times and 

sum up all the expected shortages at the end of each smaller lead time as measured by the 

value of a European Option. The expected shortage from this smaller lead time should be 

discounted continuously back to time t n because we measure expected shortage throughout 

the entire lead time. Figure 5.2 illustrates the idea clearly. 
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For a given series of lead times H1, H2, HJ, and H4, The expected shortages, S< 1l, S(2). 

S(3), and S<4) can be calculated by the Black-Scholes formula. Let tit= H, - H,+1 • Then the 

total expected shortage during the n'h lead time, discounted continuously back to time t,, , 

can be approximated as follows (Pak, 2001pp26-27). 

Demand or 
capacity 

Kn 

Un 

Kn-I 

In 

.. 

= i i.+j:-r(i-i.) E[(D(t )-Kn-It ~t' 
i=I 1. +(i-1 )61 

s ) 

Sm 

tn+H 

.. 
Fig 5.2 Series of lead times and shortages of Summing European Option 
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The lead time H, measured in years, is subdivided into m intervals. By a Riemann-

integral approximation, we can bound the expected shortage as a proportion of existing 

capacity from above and below as 

H 
where M =-. 

m 

Recall that, when following the timing policy, D(tJ = y (a constant). 
Kn-I 

The shortage estimate is found by averaging the lower and upper bounds, 

~=~=~(LB+UB). 
Kn-I Ko 2 

To obtain an accurate estimation of shortage with a reasonable amount of 

computation, Pak (2001) suggested the subdivision of lead time on daily basis: tit= - 1-year, 
364 

m = H = 182, when H = 0.5, as the compromising point between accuracy of the result and 
M 

the computation time. 

Let Sn be the expected shortage estimated by the Summing European Option method. 

We have the expected discounted shortage function over the infinite horizon as 

v(r,X)= f E[e-rt" ~n (5.2) 
n=I 

As in Chapter 4, the expected value of the discount factor is given by 
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E[e - rt n ] = E[e - rr(rK n - I ) ] = e - ph _, (rK n - I ) 

= (rKn-1 )-p = ( D(O))P 
D(O) yKn_1 

(5.3) 

where 

Notice that the discount factor E[e -ri. ] = ( D( O )JP in Chapter 4 is similar to the discount 
Kn-1 

factor in (5.3) except that y =I because in the capacity expansion model in Chapter 4, the 

manager can wait until demand reaches the existing capacity level before installing additional 

capacity. From (5.2), we have policy parameters r and X, the multiple of current capacity 

to install at each expansion. This shortage function can be written as 

v{r,x)~ t.(!:~ rs. 

(D(o)Jp( s1 J K 0
1-p 

= r K 0 1-(X +Itp 

and can be restated as 
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v{r,X)=( ~~)r K,y{y,X), (5.4) 

where 

(r x)-( s1 J r-p 
y ' - K 0 I-(X+IY-p 

(5.5) 

5.4 Discounted cost factor due to technological progress 

Recall the capacity cost function (5.1), 

C = f E[e-r1" JUJ0 

n=l 

The discount factor for the n'h expansion is given by 

E[e-r1" J=( D{O)JP 
rKn-1 

As we discussed in Chapter 2, technological change can affect the total cost of 

expansion by decreasing the present value of the discounted cost of expansion over the 

infinite time horizon. In this section, we consider the effect of deterministic of random 

technological change into two categories by its nature of appearance. The first category is 

technological change with deterministic rate. The example of this category is the capacity 

expansion model of the communications satellite system in Snow (1975)'s study. The other 

is uncertain technological change, in which the exact rate of technological change is not 

known. Example of this category can be found in Porter et al. ( 1991)' s work. 
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5.4.1 Discounted cost due to deterministic technological change 

From the sizing policy, at time t n, there is a cost of installing a capacity size 

Un = X n K 0 • The cost of installing this quantity at time 0 would be (x n K 0 r . At time t n • 

with the appearance of technological change, the cost of installing this same capacity size 

will be discounted by a factor of E[e-(r+p)t.] . Then, the discounted cost of installation can be 

written as 

where 

and 

~ 

p= ( )
2 µ 2r' µ 

0'2 + 0'2 - 0'2 . (5.6) 

Let u(r, X) be the infinite horizon expected capacity cost with decision variables y 

and X , given by: 

µ(r.x)- ~(!:~~r (u,r 

(5.7) 

where 
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(5.8) 

From the assumption that r > g, it follows that p > I > a . 

5.4.2 Discounted cost due to uncertain technological change 

As described in previous chapters, we assume the technological change follows a Poisson 

process with rate A. , the average rate of innovation per unit time. Let N(t) be a number of 

innovations up to an arbitrary time t . Let q be the exponential rate of cost decrease for each 

innovation. Since N(t) is a Poisson process, we have E[e-qN(i)] = e-(i-e ").ii . The equivalent 

deterministic cost decrease rate can be given by p = (1 - e -q )A, . The discount factor in 

deterministic technological change is now being changed to 

where 

(5.9) 

Hence, the infinite horizon expected capacity expansion cost is 

u(r,x)~ t(:~ r (u.)°' 

=(n(o))iJ f ((x+1t~1 x[, 
rKo n:I (X + I)P(n-i) 
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(5.10) 

where 

(5.11) 

~ 

and p > 1 >a. 

5.5 Balancing cost and shortage 

The goal of the capacity expansion problem with the existence of potential capacity 

shortage during lead time is to minimize the total cost function comprised of discounted 

capacity cost and shortage penalty. The objective function can be written as 

w(y,x) = u{r,x)+ mv(r,x). (5.12) 

Here, m is a penalty factor for shortage. According to Ryan (2000), the capacity cost function 

µ(r' x) is an increasing function of x for fixed r ' and a decreasing function of r for fixed 

X . On the other hand, the shortage function v(r, X) increases with y for fixed X , and 

decreases with X for fixed y . Since the objective function appears to be convex in both 

decision variables, we can find significant optimal values of each variable for proper values 

of the penalty factor. 

(5.13a) 

For the capacity expansion problem with deterministic technological change, and 



www.manaraa.com

53 

i<{r.x>=( ~~>f K;J(r.x)+~ ~~>r K,y(r.x> (5.13b) 

for the problem with uncertain technological change. 

5.6 Optimal policy parameters for capacity expansion with deterministic 

technological change 

In this section, we apply the discounted cost due to deterministic technological 

change from section 5.4.1 to the objective function (5.13). Then, we use the FindMinimum 

function in Mathematica to calculate the optimal policy parameters y and X . Since we 

have the objective function from (5.13a) as 

i<{r.x>=( ~~>r K;J<r.x>+m( ~~)r K,y(r.x) 

where 

and 

(r x) = (~) r-p 
y' K 0 1-(X+lY-P' 

the objective function (5.13a) can be restated as, 

Thus, minimizing w{y, X) is equivalent to minimizing 

tu{r,x) = J(r,x)+ my(r,x), 
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m = ,:n.&_(D(O))p-;, 
Ki K 0 

As a baseline, we used parameter values µ = 0.05 (mean logarithmic growth rate of 

5% per year), r = 0.1 (annual interest rate), a = 0.2 (standard deviation of logarithmic 

demand growth), a= 0.7 (economies of scale factor), and p = 0.025 (annual rate of cost 

decrease due to technological change). 
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Figure 5.3 Optimal policy parameters for various annual rate of cost decrease due to 

technological change 

Figure 5.3 illustrates the effect of technological progress on the optimal expansion policy 

parameters, when levels of the cost decrease rate varied from 0.01 to 0.1. As the cost 

decrease rate, p, becomes higher (a new model causes a large price drop of latest product 
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model), the optimal policy tends to encourage earlier expansion and smaller size of 

expansion. The smaller expansion size can be explained intuitively as waiting for the price to 

drop before expanding, while smaller size provides for excess capacity in fewer periods of 

the lead time. The graphic result also shows that varying p value from 0.01 to 0.1 creates 

more effect to the size of expansion ( X varies by 30%) than to the timing ( y varies by less 

than 2% ). On the other hand, varying penalty factor m from 50 to 500 creates more effect to 

the timing ( r varies by 12%) than to the sizing ( x varies by less than 6% ). 
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Figure 5.4 Comparing the optimal policy between expansion model with and 

technological change 

Technological change affects the optimal policy parameter as shown on Figure 5.4. 

The optimal policy tends to expand slightly earlier and significantly smaller according to the 
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numerical result. The figure also shows that when demand becomes more uncertain (larger 

value of a), the optimal capacity expansions get larger and earlier. 

5. 7 Optimal policy for capacity expansion with uncertain technological 

change 

In this section, we applied the discounted cost due to uncertain technological change 

from section 5.4.2 to the objective function (5.13b). From section 5.4.2, the discounted 

capacity cost is 

. u(y,X)=( ~~)r K;J(y,X), 

where 

-fl xa 
f(r X)=-Y __ 

' I - (X + 1 y-fl ' 

and 

Here, q is the exponential rate of cost decrease for each innovation, and A is the average 

number of innovations per year. The objective function (5. l 3b) can be restated as 

and 
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(r X)=(~) Y-p 
Y ' K0 1-(X +ItP 

As a baseline, we used parameter values µ = 0.05 (mean logarithmic growth rate of 

5% per year), r = 0.1 (annual interest rate), a= 0.2 (standard deviation of logarithmic 

demand growth), a= 0.7 (economies of scale factor), q = 0.05 (exponential rate of cost 

decrease per innovation), and A. = 0.5 (average innovation per year). 
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Figure 5 .5 Optimal policy parameter for various q, the exponential cost decrease rate 

due to uncertain technological change. 

For value m = 50, 75, I 00, 200 and 500, Figure 5.5 show the effect on the optimal 

policy parameters, when rate of cost decrease per innovation varies from 0.01 to 0.1. As 

capacity cost has higher sensitivity to technological change (q is high), the optimal policy 

gets smaller and earlier. The graphic also shows that varying q has impact to sizing of 
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expansion than timing of expansion, while varying penalty factor m has more impact to 

timing than expansion sizing. 
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Figure 5.6 Optimal policy for various A., Number of innovation per year. 

The graphical results in Figure 5.6 show the effect of innovation rate on the optimal 

policy parameter, when level of annual innovation rate varied from 0.2 to 2. At high average 

rate (new technology occurs in the market more frequently), the optimal policy tends to 

encourage earlier capacity expansion earlier with smaller size. The result also shows that 

expansion sizing is more sensitive to A. than penalty factor. On the other hand, the timing is 

more sensitive to penalty factor than to A.. 
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CHAPTER 6. CONCLUSION AND FURTHER RESEARCH 

6.1 Conclusion 

The objective of this research is to study the effect of technological progress on the 

capacity expansion problems in several cases. Technological progress affects capacity 

expansion in various ways including increasing product efficiency, enlarging the market size, 

and reducing production cost. We assume in this research that technological progress has 

direct impact on decreasing the unit cost of the product, which means that it provides 

capacity a reduction in the present worth cost of the expanded capacity. 

In Chapter 3, we investigated the capacity expansion problem with deterministic 

demand growth and considered both deterministic and uncertain technological change. In the 

deterministic case, we reviewed the capacity expansion model by Snow (1975) and solved 

for optimal policy parameter, which is the constant time interval between each expansion. 

The result shows that a larger cost decrease rate causes the optimal policy to include earlier 

initial expansion or a shorter time between each subsequent expansion. In the uncertain case, 

we modified Snow's capacity expansion model by assuming the technological progress 

follows a Poisson process with parameters q , the cost decrease rate per each innovation, and 

A., the innovation rate per year. We used the Poisson moment generating function to identify 

a deterministic equivalent rate of cost decrease and used that parameter to solve for the 

optimal policy parameter. The calculation result shows that the qualitative effect of a high 

cost decrease rate is the same as the effect of a high innovation rate. 
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In Chapter 4, we investigated a more complicated capacity expansion model with 

random demand growth combined with both deterministic and uncertain technological 

change. We applied the deterministic equivalent interest rate suggested in Bean et al.'s 

research (1992) to our models in this chapter. Again, the result shows that technological 

progress causes the optimal policy to expand more frequently or shorter time between each 

expansion, which causes smaller size of expansion and more flexibility to utilize newer 

technology. 

In Chapter 5, we incorporated the technological progress into the capacity 

expansion models with lead time of construction. We modified the previous works by Ryan 

(2000) and Pak (2001) with both deterministic and uncertain technological progress. We used 

the Summing European option value in order to estimate the capacity shortage during the 

lead time of expansion. With the addition of lead time, the optimal policy consists of both a 

timing and a sizing policy. The result from calculation shows that the optimal timing 

parameter is more sensitive to the penalty factor for capacity shortage than the technological 

parameters. On the other hand, the optimal sizing parameter is more sensitive to 

technological parameters than the shortage penalty. 

6.2 Further research 

The consideration of capacity expansion models with different demand growth such 

as linear or a step function is one interesting topic for further research. In the random demand 

case, the transformed Brownian motion model will be different. 
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The impact of technological progress on the demand growth is another interesting 

topic. In this thesis, we assume that they are independent. However, in some technology 

driven markets, the introduction of new innovations can affect the growth rate of demand. 

The relation between this technology rate and demand growth rate will make the problem 

more complicated. 

An interesting extension to be considered is modeling the lead time as a controllable 

variable or as a random factor. In addition, the consideration of the lead time as a function of 

capacity size is interesting for some practical industries such as power or energy generation. 

Another possible extension is some other models for technological change and their 

impact on the cost of expansion. We assume in this thesis that technological change 

decreases costs exponentially, which might not exactly fit in some capacity expansion 

problems. 
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